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CONSPECTUS: The development of more efficient and
more accurate ways to represent reactive potential energy
surfaces is a requirement for extending the simulation of large
systems to more complex systems, longer-time dynamical
processes, and more complete statistical mechanical sampling.
One way to treat large systems is by direct dynamics fragment
methods. Another way is by fitting system-specific analytic
potential energy functions with methods adapted to large
systems. Here we consider both approaches.
First we consider three fragment methods that allow a given
monomer to appear in more than one fragment. The first two
approaches are the electrostatically embedded many-body (EE-MB) expansion and the electrostatically embedded many-body
expansion of the correlation energy (EE-MB-CE), which we have shown to yield quite accurate results even when one restricts
the calculations to include only electrostatically embedded dimers. The third fragment method is the electrostatically embedded
molecular tailoring approach (EE-MTA), which is more flexible than EE-MB and EE-MB-CE. We show that electrostatic
embedding greatly improves the accuracy of these approaches compared with the original unembedded approaches.
Quantum mechanical fragment methods share with combined quantum mechanical/molecular mechanical (QM/MM) methods
the need to treat a quantum mechanical fragment in the presence of the rest of the system, which is especially challenging for
those parts of the rest of the system that are close to the boundary of the quantum mechanical fragment. This is a delicate matter
even for fragments that are not covalently bonded to the rest of the system, but it becomes even more difficult when the
boundary of the quantum mechanical fragment cuts a bond. We have developed a suite of methods for more realistically treating
interactions across such boundaries. These methods include redistributing and balancing the external partial atomic charges and
the use of tuned fluorine atoms for capping dangling bonds, and we have shown that they can greatly improve the accuracy.
Finally we present a new approach that goes beyond QM/MM by combining the convenience of molecular mechanics with the
accuracy of fitting a potential function to electronic structure calculations on a specific system. To make the latter practical for
systems with a large number of degrees of freedom, we developed a method to interpolate between local internal-coordinate fits
to the potential energy. A key issue for the application to large systems is that rather than assigning the atoms or monomers to
fragments, we assign the internal coordinates to reaction, secondary, and tertiary sets. Thus, we make a partition in coordinate
space rather than atom space. Fits to the local dependence of the potential energy on tertiary coordinates are arrayed along a
preselected reaction coordinate at a sequence of geometries called anchor points; the potential energy function is called an
anchor points reactive potential.
Electrostatically embedded fragment methods and the anchor points reactive potential, because they are based on treating an
entire system by quantum mechanical electronic structure methods but are affordable for large and complex systems, have the
potential to open new areas for accurate simulations where combined QM/MM methods are inadequate.

1. INTRODUCTION
A dynamics calculation requires a potential energy surface
(PES) to govern the equations of motion. The goal of much
current research is the calculation of the PES of a large system
with the electronic structure of the entire system treated
quantum mechanically at a reliable level. This usually involves
fragmenting the system at one or more points in the
calculation. There are many ways to do this, and there are
even many ways of classifying the various approaches. We are
especially interested in methods that yield a global or
semiglobal PES, by which we mean that they can treat bond
breaking or bond rearrangement rather than just the potential

for small-amplitude vibrations around an equilibrium structure
or a single transition structure; it is especially important that
they be able to treat chemical reactions. In this Account, we
discuss three approaches to developing PESs for large systems
that may be either reactive or unreactive. The first two, the
electrostatically embedded many-body (EE-MB) approximation
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and the electrostatically embedded molecular tailoring
approach (EE-MTA), yield implicit PESs suitable for direct
dynamics, in which the potential energy, gradient, or Hessian is
calculated by electronic structure methods each time the
dynamics or sampling algorithm calls for it.1,2 The third
method, the anchor points reactive potential (APRP), is a
systematic method for semiglobal fitting of an analytic function
to the PES.

2. OVERLAPPING QUANTUM MECHANICAL
FRAGMENT METHODS

The many-body (MB) expansion3 provides the foundation for
many fragment methods. It expresses the potential energy (V)
of a system as a finite sum of fragment potential energy terms,
which can be calculated at any level of electronic structure
theory or even at a combination of levels. The first term of the
series involves only monomer energies (Ei), the second term
depends on both monomer and dimer (Eij) energies, the third
term depends on monomer, dimer, and trimer (Eijk) energies,
etc. For a system containing N monomers, the potential energy
is

= + + + +V V V V V... N1 2 3 (1)
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and so on. By truncating the MB expansion before the final
term, one obtains an approximation of the total potential
energy of the entire system. In terms of computational
efficiency, it is undesirable to include V4 (or higher) because
the number of tetramers in a system scales as N4, which yields a
scaling in computational cost that matches that of a
conventional Hartree−Fock calculation or hybrid Kohn−
Sham calculation on the entire system without fragmentation.
Truncating the MB expansion after the second term yields the
pairwise additive (PA) approximation, and truncating after the
third term yields the three-body (3B) approximation.
The method described above is the straight MB method.

Notice that the fragments (dimers, trimers, ...) overlap; that is, a
given monomer belongs to more than one fragment. Because of
this, all possible intermonomer interactions can be calculated at
the desired level of electronic structure theory even at the
pairwise additive level. In contrast, many fragment methods use
disjointed fragments such that the interactions between
monomers in different fragments are treated at a lower level
than intrafragment interactions. Herbert et al.4 have published
an expression for a generalized many-body expansion that can
be used to describe nearly all types of fragment methods.
The MB approximation described in eqs 1−6 has been

applied to a variety of water clusters.5−14 The general consensus

emerging from these calculations is that in order to achieve
quantitative accuracy, one must include cooperative effects: that
is, one must use the 3B approximation or higher. It is desirable
to find ways to include higher-order effects in the lower terms
of the MB expansion of the PES that might allow greater
accuracy at the PA level. Some approaches that our group has
developed are the EE-MB method9 and the many-body
expansion of the correlation energy (MB-CE) method, which
can also include electrostatic embedding, in which case it is
called the EE-MB-CE method.10

The monomers not in the fragment currently under
consideration (the primary fragment) are called the external
monomers or the external subsystem. The EE-PA method
approximates effects beyond V2 in a simple way: partial atomic
charges obtained from isolated monomer electron densities are
placed at the coordinates of the external nuclei and are included
in the fragment energy calculations. In every case where we
have compared PA and EE-PA calculations, we have found that
including electrostatic embedding significantly improves the
accuracy of the PA approximation. Over a series of water
clusters ranging in size from 5 to 20 molecules, the mean
unsigned deviation (MUD) from unfragmented calculations of
binding energies at the same level of theory (MP2) is reduced
from 1.31 to 0.07 kcal per mole of water molecules when
electrostatic embedding is added to the PA approximation.10

Similarly, over a series of five water 16-mers, the MUD from
conventionally calculated binding energies at the same level of
theory is reduced from 6.09 to 0.60 kcal per mole of water
molecules.11 Electrostatic embedding usually also improves the
3B approximation. One can also use “screened” or “smeared”
charges rather than point charges to electrostatically embed the
various fragments,12 as discussed in section 3.
The EE-PA and EE-3B approximations have been applied

successfully to clusters containing water, ammonia, and sulfuric
acid and their proton transferred forms (as illustrated in Figure
1).15,16 Most recently, we applied it to eight (H2O)26 clusters
pulled out of a bulk water simulation; we presented CCSD(T)/
CBS calculations as benchmarks.14 By using the M11 exchange-
correlation functional for the embedded dimers in the EE-PA
approximation, we found mean unsigned errors of only 0.029
and 0.042 kcal per mole of water monomers for relative and
absolute binding energies, respectively.14 We have also applied
the EE-3B method to a 64-mer.1

The MB-CE and EE-MB-CE approximations improve the
accuracy of the PA approximation by including higher-order
effects (such as cooperative induction) calculated at a less
computationally costly level of theory. In these methods, an
unfragmented PES calculation is performed on the entire
system at the lower level of theory, and the many-body method
is used to approximate the dif ference between the lower-level
PES and what would be calculated at a higher level. In order to
approximate this difference, the potential energy of each
fragment must be calculated at both the lower and higher levels
of theory. One can make the “EE-” version of the MB-CE
approximation by including electrostatic embedding in the
fragment calculations at both the lower and higher levels of
theory. For the “-CE” approximations, the higher level of theory
can be a post-Hartree−Fock correlated level of wave function
theory, and the lower level of theory must be Hartree−Fock.
We have tested the MB-CE and EE-MB-CE approximations on
a wide variety of water clusters10,11,13 and on metal−ligand
complexes.17 In all cases, both the MB-CE and EE-MB-CE
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approximations improve upon the already impressive accuracy
of the corresponding EE-MB approximations.
Charge transfer between fragments is missing in methods

with nonoverlapping fragments, but we have shown18 that it
can be treated reasonably accurately by EE-MB.
The molecular tailoring approach (MTA),19,20 the general

energy-based fragmentation approach,21 and the molecules-in-
molecules method22 also involve overlapping fragments but
have greater flexibility in the fragmentation scheme than the
MB expansion. Rahalkar el al.23 compared the MTA and
fragment molecular orbital (FMO) method24 for various sizes
of water clusters, polypeptides, and a small protein. Their
comparison shows that for most of the test systems MTA is
more accurate than FMO2 (which is truncated at the two-body
term) and comparable in both computational cost and accuracy
to FMO3 (truncated at the three-body term). Rahalkar et al.23

also summarized nine differences between the MTA and FMO

methods, including that MTA allows a more general basis for
fragmentation and fragment overlap and allows a more physical
treatment of broken bonds. The original MTA did not include
electrostatic embedding.
We suggested the EE-MTA, and we tested in the second

order approximation.25 At this order, the PES is given by

∑ ∑= − −∩V E E E
I

I
I J

I J
,

OC
(7)

where EI is the electronic energy of fragment I that is
embedded in the electrostatic field by the rest of system, and
EI∩J is the energy (again electrostatically embedded) of the
overlapping part of the two fragments, and EOC corrects for
overcounting Coulomb interactions involving the external
subsystem; the correction greatly affects the accuracy, so a
careful treatment21,25 is required. In addition one must carefully
choose the method for obtaining partial atomic charges, since
the results can be sensitive to this; ideally the electrostatic
embedding would be carried out without simplifying the
embedding density to point charges.
For a chain polymer with 21 monomers, we may take each

successive set of five monomers as a fragment. The fragments
are then 17 pentamers (1−5 through 17−21), and the second
term in eq 7 contains 16 tetramers (2−5 through 17−20)
whose energies are subtracted to avoid overcounting
monomers. See Figure 2. Or we may take the fragments as
hexamers or other oligomers. Notice that the boundaries
between fragments cut covalent bonds, so we must cap the
dangling bonds; this is discussed in the next subsection. The
primary role of the cap atom is to allow the fragment method to
mimic the electronic structure of each fragment as closely as
possible to its electronic structure in the whole peptide, but
cap−cap interactions can be unphysical. Such interactions
become significant as the fragment size is made small. To avoid
this unphysical interaction, we recommend keeping the
fragments large enough that the caps on the two edges of a
given fragment are far from each other, where their interaction
energy is small. If one considers higher-order terms involving
monomers that appear in three or more fragments,
computations of smaller fragments are required to keep the
cost manageable, and cap−cap interactions generate some
errors, so we only consider the second-order approximation.
We tested EE-MTA for the polypeptide Ace-(Ala)20-NMe.25

Table 1 gives results for the relative conformational energy of
an α-helix and a parallel-β sheet, and it shows that the deviation
of EE-MTA from full QM calculation is smaller than that of
conventional MTA by more than a factor of 10.

Figure 1. (top) Cluster containing one sulfuric acid molecule, one
bisulfate ion (in which one oxygen atom is hidden), one ammonium
ion, and six waters. (bottom) Seven of the nine fragments have been
replaced by point charges, leaving one electrostatically embedded
dimer.

Figure 2. α-Helix structure of the peptide, showing two of the pentamers and one of the tetramers.
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3. NEW METHODS FOR ELECTROSTATIC EMBEDDING
AND FRAGMENT BOUNDARIES

It is crucial to develop more robust schemes for electrostatic
embedding in both combined quantum mechanical and
molecular mechanical (QM/MM) methods and fragment
QM methods. Two critical issues addressed in this section
are the treatment of the fragment boundary across a covalent
bond and the treatment of the electrostatic interactions
between the primary and external subsystems.
The boundary between a QM fragment and the external

subsystem may cut a covalent bond; the resulting dangling
valence in the QM fragment must be handled properly. The
conventional approach is to saturate a cut bond by a hydrogen
link atom26,27 or orbitals.28−30 New approaches involve using
an artificial atom parametrized (“tuned”) to better represent the
external subsystem,31−36 and we have developed a tuning
scheme based on the CM5 charge model that allows more
consistency without constraints on the basis set.36

The partial atomic charges near the boundary need special
treatment for a boundary through a covalent bond. When the
bond is cut, the sum of the partial atomic charges of the
surroundings and the charge of the QM region does not
necessarily equal the charge of the original uncapped fragment.
Balancing the external charges so that their sum plus the charge
of the capped QM region equals the charge of the original
system greatly improves the results.31,34,37 For combined QM/
MM calculations with a hydrogen link atom on a database of 15
protonation energies, balancing the charges reduced the mean
unsigned deviation (MUD) from 19 to 9 kcal/mol. Capping
with a fluorine link atom instead of a hydrogen link atom
further lowered this to 5 kcal/mol. After balancing, the external
charges near the boundary need to be redistributed and/or
smeared to avoid overpolarization of the QM region.35,38−42

Redistributing the charges with the BRC2 algorithm35 (in
which the adjusted charge on the MM atom directly bonded to
the QM region is evenly redistributed to all MM atoms that are
bonded to it) further lowered the MUD on the test set of
protonation energies to 6 kcal/mol with a hydrogen link atom
or 4 kcal/mol with a fluorine link atom.
Using a pseudopotential to tune the fluorine atom to

correctly reproduce the sum of the partial charges of the
uncapped portion of the quantum mechanical fragment35,36

then lowered the MUD to 2 kcal/mol.
At this point, it is interesting to return to the discussion of

the EE-MTA method. The error caused by cutting a covalent
bond is less severe in EE-MTA since the boundary portions are
canceled out in the MTA. Our comparison with a hydrogen
link atom and a tuned fluorine link atom25 do not yield

substantial differences in the energy deviation from the full QM
calculation. This cancellation of errors from the boundary
region is one of advantages of the EE-MTA formalism.
In electrostatically embedded calculations, the QM fragment

is embedded in the electrostatic potential of the surroundings.
In the results discussed so far, the electrostatic potential of the
surroundings is represented by a set of atom-centered partial
atomic charges. These point charges polarize the QM electron
density. However, the electrostatic potential due to the external
atoms is not accurately described by a collection of point
charges.43−45 One important correction is to include the charge
penetration effect. As a point charge approaches a frozen atom,
it sees more and more of the positive nuclear charge because
the shielding of the nuclear charge by its electron density
decreases. Various approaches have been proposed to include
this charge penetration effect in the embedding poten-
tials.39,42,46−48 Our own solution to this problem is to treat
the atoms of the secondary subsystem as charge distributions
rather than point charges.48 The conventional approximation
for the electric potential of an atom with partial atomic charge
qA is qA/r where r is the distance from the nucleus. However,
for nonhydrogenic atoms, we put one electron in a spherical
Slater-type orbital, with a charge of qA + 1 at the nucleus. Then
the electric potential becomes qA*/r where

ζ ζ* = + −q q f r r( ) exp( 2 )A A (8)

where ζ is a parameter depending on the atomic number of
atom A, and f is a polynomial factor. For external hydrogen
atoms, the treatment is the same except that the number nscreen
of electrons in the Slater orbital is 1 − qA if qA is positive. The
procedure is illustrated in Figure 3.

Since qA*/r is a simple radial function, this treatment of
screening can be easily implemented in existing programs. The
screened charge model has been tested in both the QM/MM
method and the EE-MB method, and it showed good
performance for both the electrostatic interactions and the
polarization of the QM fragment.12,48 For 414 test cases of
noncovalent interactions, the MUD in the electrostatic energy
(compared with symmetry-adapted perturbation theory49

calculations) was reduced from 8 to 3 kcal/mol, and the
MUD in the induction energy was reduced from 1.9 to 1.4
kcal/mol.48 For five water hexamers, screened electrostatics
reduced the MUD in binding energy from 0.22 kcal per mole of
water molecules to 0.10 with EE-PA and from 0.09 to 0.04 with
EE-3B.12

The above discussion is devoted to electrostatic embedding
in the absence of solvent. A method to extend electrostatic
embedding to reactions in the condensed phase is the use of
charge response kernels.50−53

Table 1. Relative Energy (kcal/mol) of the α Helix and
Parallel-β Sheet of Ace-(Ala)20-NMea

fragments MTA EE-MTA

trimers 49.1 −102.5
tetramers −67.0 −114.6
pentamers −75.9 −127.4
hexamers −86.2 −128.0
heptamers −102.8 −129.1
full calculation −131.1 −131.1

aThe cap atom is a hydrogen link atom. The embedding charges are
AMBER RESP charges. The charge redistribution scheme is BRC2.35

The partitioning is cap-Cα···N-cap. The QM subsystems are treated by
M06-2X/6-31G*. See ref 25 for details.

Figure 3. A screened charge includes a point charge (for the nucleus
and inner electron density) and a smeared charge (for the outer
electron density). These replace a single partial atomic charge of qA at
the nucleus.
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4. A NEW WAY TO COMBINE QM AND MM: ANCHOR
POINTS REACTIVE POTENTIAL

QM fragment methods are very efficient for electronic structure
calculations of large systems. Much larger systems can be
treated with QM/MM and QM fragment methods than with
unfragmented methods. However, even the fragment methods
discussed above are often too expensive for dynamics studies of
moderate and large systems. For extensive sampling or long-
time dynamics of large systems, we require an analytic
representation of the PES. MM provides general functional
forms and parameters for analytical potentials, and the same
functional forms can be fit to electronic structure calculations to
generate more accurate system-specific parameters,54,55 but
only for nonreactive systems; reactive analytic potentials
require more general functional forms with parameters specific
to a given system or delimited range of systems.56−60 Recently
developed methods based on permutation-invariant polyno-
mials (PIP)61−63 and interpolating moving least-squares
(IMLS)64−66 can describe bond dissociation processes and
chemical reactions very well; but they are limited to very small
systems, usually five or fewer atoms. Here we describe the new
APRP method applicable for dynamics of larger systems.67 In
this method, degrees of freedom that execute large-amplitude
motions, including bond breaking, are treated with accurate
model potentials or general functional forms, and degrees of
freedom that execute only small-amplitude vibrations are
treated with molecular mechanics terms that are both system-
specific and dependent on one or more reaction coordinates.
This provides a general method of representing reactive PESs
that combines the accuracy of QM with the ease of evaluation
of MM as well as analytic gradients. Because only small-
amplitude vibrations are treated for some degrees of freedom
(which will be called the tertiary coordinates), this method
yields only a semiglobal PES, but that is adequate for most
chemical reactions.
The APRP method uses internal coordinates, and the

internal coordinates are divided into three predefined groups:
(1) reaction coordinates, q; (2) secondary coordinates, s; (3)
tertiary coordinates, Q. Then the PES is partitioned as

= + | + |V V V Vq s q Q q( ) ( ) ( )[1] [2] [3]
(9)

where f(x|y) denotes a function with a dependence on x and
parametric dependence on y. The three terms of eq 9 are called
the primary, secondary, and tertiary potentials; the primary and
secondary terms can be completely general. We emphasize the
difference in philosophy from other fragment methods; here
the primary and secondary subsystems are defined as subsets of
internal coordinates rather than as subsets of atoms. As an
example, Figure 4 shows coordinates for dimethyl amine.67 The
primary coordinate is the bond stretching coordinate r, and
there are two secondary coordinates, the difference of two C−
N−H bend angles, θ1 − θ2, and the out-of-plane H−N−C−C
bend angle, θ3; the other internal coordinates make up the
tertiary coordinates.
Accurate quantum calculations are performed in the space of

q and s for a set of fixed values of Q corresponding to a
reference geometry. General functional forms are used to fit
V[1](q) and V[2](s|q). The tertiary potential V[3](Q|q) is
constructed by using tent functions to interpolate the anchor-
point-specific, system-specific MM potentials between anchor
points, which are partially optimized for selected q values along
reactive coordinate. The MM functional forms should be

globally well behaved even though they are parametrized only
for small-amplitude vibrations.
The APRP method can also be applied to electronically

nonadiabatic photodissociation reactions, for example, by fitting
the diabatic potential energy surfaces68 of phenol. The size of
phenol prevents the use of conventional PES fitting methods to
construct full-dimensional (33-D) PESs, but constructing
APRPs remains practical.

5. CONCLUDING REMARKS
We have reviewed two fragment methods with overlapping
fragments (in overlapping fragments, a monomer appears in
more than one fragment) and also a method where the system
division is defined in terms of sets of coordinates rather than
collections of monomers. We have made good progress on
developing these methods for PESs of large systems, but there
is considerable room for further development. For example, we
could develop multilevel schemes where more important or
more active fragments are treated at a higher level than others,
and some fragments could even be replaced with an implicit
solvent model.69 There is also considerable room for
improvement in the embedding potentials, where exchange−
repulsion effects could be included by effective potentials.70−72

We anticipate that fragment methods will continue to be
improved.
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